The solution of the function [tex]\rm \int{sin(t) (1 + cos(t) )} \, dt[/tex] is - cos t - ¹/₄cos 2t + c.
An indefinite integral is a function that practices the antiderivative of another function.
It can be visually represented as an integral symbol, a function, and then a dx at the end.
The given function is;
[tex]\rm \int{sin(t) (1 + cos(t) )} \, dt[/tex]
Multiply by sint in the function and simplify;
[tex]\rm \int{sin(t) (1 + cos(t) )} \, dt\\\\\rm \int{sin(t) + sin(t)cos(t) \, dt[/tex]
Use trigonometric formulas for double angles:
[tex]\rm 2sintcost =sin2t\\\\sin t cost =\dfrac{1}{2} sin2t[/tex]
Substitute the values in the function
[tex]\rm \int{sin(t) (1 + cos(t) )} \, dt\\\\\rm \int{sin(t) + sin(t)cos(t) \, dt}\\\\ \int{sin(t) + \dfrac{1}{2} sin2t \, dt}\\\\[/tex]
And now we integrate this trigonometric form.
[tex]\rm \int{sin(t) + \dfrac{1}{2} sin2t \, dt}\\\\ \int{sin(t) dt } +\dfrac{1}{2}\int{sin(2t)\, dt}\\\\-cost -\dfrac{1}{2} \times \dfrac{1 \times -cos2t}{2}\\\\-cost -\dfrac{{1 \times -cos2t}}{4}+c[/tex]
Hence, the solution of the given function is - cos t - ¹/₄cos 2t + c.
Learn more about indefinite integral here;
https://brainly.com/question/9829575
#SPJ4