There are three containers filled with different gases as shown.

Container Gas Density Container Dimensions
A Hydrogen - 0.09 mg/cm3 a cube with sides of 15 cm
B Helium - 0.175 mg/cm3 a rectangular prism with sides of 14 cm, 12 cm, 10 cm
C Nitrogen - 1.251 mg/cm3 a sphere with a diameter of 8 cm
What is the correct order of mass from least to greatest?

Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

As we know,

[tex] \sf \qquad density = \dfrac{mass}{volume} [/tex]

So, we can infer that :

[tex] \sf \qquad mass= {density} \cdot{volume} [/tex]

Now, let's calculate the mass of gases in each case :

Case A : Hydrogen ~

[tex]\qquad \sf  \dashrightarrow \:mass = 0.09 \times (15) {}^{3} [/tex]

[tex]\qquad \sf  \dashrightarrow \:mass = 0.09 \times 3375 {}^{} [/tex]

[tex]\qquad \sf  \dashrightarrow \:mass = 303.75 \: \: mg {}^{} [/tex]

or

[tex]\qquad \sf  \dashrightarrow \:mass =0. 30375 \: \: g {}^{} [/tex]

Case B : Helium ~

[tex]\qquad \sf  \dashrightarrow \:mass =0. 175 \: \cdot \: (14 \sdot 12 \sdot10)[/tex]

[tex]\qquad \sf  \dashrightarrow \:mass =0. 175 \: \cdot \: 1680[/tex]

[tex]\qquad \sf  \dashrightarrow \:mass =0. 175 \: \cdot \: 294 \: \: mg[/tex]

or

[tex]\qquad \sf  \dashrightarrow \:mass = 0.294 \: \: g[/tex]

Case C : Nitrogen ~

[tex]\qquad \sf  \dashrightarrow \:mass = 1.251\: \cdot \: \dfrac{4}{3} \cdot3.14 \cdot(4) {}^{3} [/tex]

[tex]\qquad \sf  \dashrightarrow \:mass = 0.417\: \cdot \: 803.84[/tex]

[tex]\qquad \sf  \dashrightarrow \:mass = 335.201 \: \: mg[/tex]

or

[tex]\qquad \sf  \dashrightarrow \:mass = 0.335 \: \: g[/tex]

So, the arrangement of masses from least to greatest is :

  • (1.) Hydrogen < (2.) Helium < (3.) Nitrogen