Respuesta :
Answer:
solve the equation with known values filled in; width is 3 ft.
Step-by-step explanation:
The perimeter formula can be used to find a missing value by filling in all of the known values, and solving the resulting equation.
__
P = 2(L +W) . . . . . . perimeter formula
14 = 2(4 +W) . . . . . known values substituted
7 = 4 +W . . . . . . . divide by 2
3 = W . . . . . . . . . subtract 4
The width is found to be 3 feet using the perimeter formula.
Answer:
The width of rectangular poster is 3 feet.
Step-by-step explanation:
As per given question we have provided that :
- → Perimeter of rectangle = 14 feet
- → Length of rectangle = 4 feet
We need to find the width of rectangle.
Here's the required formula to find the width :
[tex]{\underbrace{\sf{\small{ \: \: P = 2(L + W) \: \: }}}}[/tex]
- ➟ P = Perimeter
- ➟ L = Length
- ➟ W = Width
Calculating the width of rectangular poster by substituting the values in the formula :
[tex]\begin{gathered} \qquad{\twoheadrightarrow{\sf{\small{ \: \: P = 2(L + W) \: \: }}}} \\ \\ \qquad{\twoheadrightarrow{\sf{\small{ \: \: 14 = 2(4+ W) \: \: }}}} \\ \\ \qquad{\twoheadrightarrow{\sf{\small{ \: \: \dfrac{14}{2} = (4+ W) \: \: }}}} \\ \\ \qquad{\twoheadrightarrow{\sf{\small{ \: \: 7= (4+ W) \: \: }}}} \\ \\ \qquad{\twoheadrightarrow{\sf{\small{ \: \: W = 7 - 4\: \: }}}} \\ \\ \qquad{\twoheadrightarrow{\sf{\underline{\underline{\small{ \: \: W = 3\: \: }}}}}} \end{gathered}[/tex]
Hence, the width of rectangular poster is 3 feet.
[tex]\rule{200}2[/tex]