Respuesta :

Answer:

  solve the equation with known values filled in; width is 3 ft.

Step-by-step explanation:

The perimeter formula can be used to find a missing value by filling in all of the known values, and solving the resulting equation.

__

  P = 2(L +W) . . . . . . perimeter formula

  14 = 2(4 +W) . . . . . known values substituted

  7 = 4 +W . . . . . . . divide by 2

  3 = W . . . . . . . . . subtract 4

The width is found to be 3 feet using the perimeter formula.

Answer:

The width of rectangular poster is 3 feet.

Step-by-step explanation:

As per given question we have provided that :

  • → Perimeter of rectangle = 14 feet
  • → Length of rectangle = 4 feet

We need to find the width of rectangle.

Here's the required formula to find the width :

[tex]{\underbrace{\sf{\small{ \: \: P = 2(L + W) \: \: }}}}[/tex]

  • ➟ P = Perimeter
  • ➟ L = Length
  • ➟ W = Width

Calculating the width of rectangular poster by substituting the values in the formula :

[tex]\begin{gathered} \qquad{\twoheadrightarrow{\sf{\small{ \: \: P = 2(L + W) \: \: }}}} \\ \\ \qquad{\twoheadrightarrow{\sf{\small{ \: \: 14 = 2(4+ W) \: \: }}}} \\ \\ \qquad{\twoheadrightarrow{\sf{\small{ \: \: \dfrac{14}{2} = (4+ W) \: \: }}}} \\ \\ \qquad{\twoheadrightarrow{\sf{\small{ \: \: 7= (4+ W) \: \: }}}} \\ \\ \qquad{\twoheadrightarrow{\sf{\small{ \: \: W = 7 - 4\: \: }}}} \\ \\ \qquad{\twoheadrightarrow{\sf{\underline{\underline{\small{ \: \: W = 3\: \: }}}}}} \end{gathered}[/tex]

Hence, the width of rectangular poster is 3 feet.

[tex]\rule{200}2[/tex]