Respuesta :

Answer:

[tex]1 + { \sin} \theta[/tex]

Step-by-step explanation:

[tex] \frac{ { \cos}^{2} \theta}{1 - \sin \theta} \\ \\ = \frac{ { \cos}^{2} \theta}{(1 - \sin \theta)} \times \frac{(1 + \sin \theta)}{(1 + \sin \theta)} \\ \\ = \frac{{ \cos}^{2} \theta(1 + { \sin} \theta)}{(1 - { \sin}^{2} \theta)} \\ \\ = \frac{{ \cancel{ \cos}^{2} \theta}(1 + { \sin} \theta)}{ \cancel{{ \cos}^{2} \theta}} \\ \\ = 1 + { \sin} \theta[/tex]

Let's see

[tex]\\ \rm\Rrightarrow \dfrac{cos^2\theta}{1-sin\theta}[/tex]

[tex]\\ \rm\Rrightarrow \dfrac{1-sin^2\theta}{1-sin\theta}[/tex]

  • (a+b)(a-b)=a²-b²

[tex]\\ \rm\Rrightarrow \dfrac{(1-sin\theta)(1+sin\theta)}{1-sin\theta}[/tex][/tex]

[tex]\\ \rm\Rrightarrow 1+sin\theta[/tex]

Option A