Respuesta :
Sequence: 1, 3, 6, 10, 15, …
If sequence is arithmetic, [tex]\boxed{\sf \bold{second \ term = \dfrac{first \ term+third \ term}{2} }}[/tex]
If sequence is geometric, [tex]\boxed{\sf \bold{second \ term = \sqrt{first \ term \ * \ third \ term} }}[/tex]
Check for arithmetic:
[tex]\sf \rightarrow 3 = \dfrac{1+6}{2}[/tex]
[tex]\sf \rightarrow 3 =3.5[/tex] Hence, the sequence is not arithmetic
Check for geometric:
[tex]\sf \rightarrow 3 = \sqrt{1*6}[/tex]
[tex]\sf \rightarrow 3 = \sqrt{6}[/tex] Hence, the sequence is not geometric
Solution:
- Neither
[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]
[tex] \textbf{Let's see if the sequence is Arithmetic or Geometric :} [/tex]
- [tex] \textsf{If the difference between successive terms is } [/tex] [tex] \textsf{equal then, the terms are in AP} [/tex]
[tex] \textsf{and} [/tex]
- [tex] \textsf{If the ratio of successive terms is } [/tex] [tex] \textsf{equal then, the terms are in GP} [/tex]
[tex]\textsf{Since neither common difference is same, }[/tex] [tex]\textsf{nor common ratio is same, therefore }[/tex] [tex] \textsf{we can infer that it's neither an Arithmetic progression} [/tex] [tex] \textsf{nor Geometric progression. } [/tex]
Hope it helps ~