Respuesta :

We can find the distance between two points by using distance formula,

[tex] \qquad \: D = \sf \red{\sqrt{ {(x_2 -x_1)}^{2} + {(y_2 -y_1)}^{2} }}[/tex]

Here,

x₁ = -3

x₂ = 5

y₁ = -2

y₂ = 2

Therefore,

[tex] : \implies \: D = \sf \red{\sqrt{ {(x_2 -x_1)}^{2} + {(y_2 -y_1)}^{2} }} \\ \\ : \implies \: D = \sf \sqrt{ {(5-( - 3))}^{2} + {(2 -( - 2))}^{2} }

\\ \\ : \implies \: D = \sf \sqrt{ {8}^{2} + {4}^{2} } \\ \\ : \implies \: D = \sqrt{64 + 16}

\\ \\ : \implies \: D = \sqrt{80} [/tex]

Hence the √80 = 8.94 approx is the distance between the two points (-3,-2) and (5,2).

To find :-

The distance between 2 points

Given :-

Here we have been provided 2 points

(-3, -2) and (5, 2)

Solution :-

[tex] (x_1,y_1) = (-3,-2) \\ (x_2,y_2) = (5,2) [/tex]

Formula to find distance is

[tex] = \sqrt{ {(x_2 - x_1)}^{2} + {(y_2 - y_1)}^{2} } [/tex]

[tex] = \sqrt{ {(5 - ( - 3))}^{2} + {(2 - ( - 2))}^{2} } \\ = \sqrt{ {(8)}^{2} + {(4)}^{2} } \\ = \sqrt{64 + 16} \\ = \sqrt{80} \\ = 4 \sqrt{5} [/tex]

Result :-

The distance between 2 points is 4√5.

[tex] \mathcal {BE \: \: BRAINLY} [/tex]