Respuesta :
We can find the distance between two points by using distance formula,
[tex] \qquad \: D = \sf \red{\sqrt{ {(x_2 -x_1)}^{2} + {(y_2 -y_1)}^{2} }}[/tex]
Here,
x₁ = -3
x₂ = 5
y₁ = -2
y₂ = 2
Therefore,
[tex] : \implies \: D = \sf \red{\sqrt{ {(x_2 -x_1)}^{2} + {(y_2 -y_1)}^{2} }} \\ \\ : \implies \: D = \sf \sqrt{ {(5-( - 3))}^{2} + {(2 -( - 2))}^{2} }
\\ \\ : \implies \: D = \sf \sqrt{ {8}^{2} + {4}^{2} } \\ \\ : \implies \: D = \sqrt{64 + 16}
\\ \\ : \implies \: D = \sqrt{80} [/tex]
Hence the √80 = 8.94 approx is the distance between the two points (-3,-2) and (5,2).
To find :-
The distance between 2 points
Given :-
Here we have been provided 2 points
(-3, -2) and (5, 2)
Solution :-
[tex] (x_1,y_1) = (-3,-2) \\ (x_2,y_2) = (5,2) [/tex]
Formula to find distance is
[tex] = \sqrt{ {(x_2 - x_1)}^{2} + {(y_2 - y_1)}^{2} } [/tex]
[tex] = \sqrt{ {(5 - ( - 3))}^{2} + {(2 - ( - 2))}^{2} } \\ = \sqrt{ {(8)}^{2} + {(4)}^{2} } \\ = \sqrt{64 + 16} \\ = \sqrt{80} \\ = 4 \sqrt{5} [/tex]
Result :-
The distance between 2 points is 4√5.
[tex] \mathcal {BE \: \: BRAINLY} [/tex]