Respuesta :
Answer:
Solution 1: 1+1[tex]\sqrt{3}[/tex]
Solution 2: 1-[tex]1\sqrt{3}[/tex]
Step-by-step explanation:
x^2-2=2x
x^2-2x-2=0
Use quadratic equation.
(-b+-[tex]\sqrt{b^2-4ac}[/tex])/2a
(2+-[tex]\sqrt{(-2)^2-4*1*-2}[/tex])/2
(2+-[tex]\sqrt{(4+8})[/tex])/2
(2+-[tex]\sqrt{12}[/tex])/2
Solution 1: (2+2[tex]\sqrt{3}[/tex])/2=1+1[tex]\sqrt{3}[/tex]
Solution 2: 1-[tex]1\sqrt{3}[/tex]
Let's first move everything, the constants and variables to one side
[tex]x^2-2=2x[/tex] ⇒ [tex]x^2-2x-2=0[/tex]
The second form is in the general form of the quadratic equation:
⇒ [tex]ax^2+bx+c = 0[/tex]
- a ⇒ 1
- b ⇒ -2
- c ⇒ -2
To find the value of x, we can use the quadratic formula:
⇒ look at the diagram attached
[tex]x = \frac{-b-\sqrt{b^2-4ac} }{2a} =\frac{2-\sqrt{(-2)^2-4(1)(-2)} }{2*1} =\frac{2-\sqrt{4+8} }{2} =\frac{2-\sqrt{12} }{2} =\frac{2-2\sqrt{3}}{2} =1-\sqrt{3}[/tex]
[tex]x = \frac{-b+\sqrt{b^2-4ac} }{2a} =\frac{2+\sqrt{(-2)^2-4(1)(-2)} }{2*1} =\frac{2+\sqrt{4+8} }{2} =\frac{2+\sqrt{12} }{2} =\frac{2+2\sqrt{3}}{2} =1+\sqrt{3}[/tex]
/\
| |
| |
Answer
To answer the question, just answer in the order I solved it, because the question asks you to put the answer in ascending order which means from least to greatest.
Hope that helps!