Respuesta :

Answer:

Option B, [tex]516.3\ units[/tex]

Step-by-step explanation:

Step 1:  Determine the area of the back

[tex]A = l * w[/tex]

[tex]A = 10\ units * 13\ units[/tex]

[tex]A = 130\ units^2[/tex]

Step 2:  Determine the hypotenuse

Pythagorean theorem → [tex]a^2 + b^2 = c^2[/tex]

[tex](10-6)^2\ units + 7^2\ units = c^2[/tex]

[tex]4^2\ units + 7^2\ units=c^2[/tex]

[tex]16\ units+49\ units=c^2[/tex]

[tex]\sqrt{65}=\sqrt{c^2}[/tex]

[tex]8.06 = c[/tex]

Step 3:  Determine the area of the top

[tex]A = l * w[/tex]

[tex]A = 13\ units * 8.06\ units[/tex]

[tex]A = 104.81\ units^2[/tex]

Step 4:  Determine the area of the front

[tex]A = l * w[/tex]

[tex]A = 13\ units * 6\ units[/tex]

[tex]A = 78\ units^2[/tex]

Step 5:  Determine the area of the bottom

[tex]A = l * w[/tex]

[tex]A = 13\ units * 7\ units[/tex]

[tex]A = 91\ units^2[/tex]

Step 6:  Determine the area of the trapezoid

[tex]A = \frac{a + b}{2} * h[/tex]

[tex]A = \frac{10\ units\ +\ 6\ units}{2}*7\ units[/tex]

[tex]A = 8\ units*7\ units[/tex]

[tex]A = 56\ units^2[/tex]

Step 7:  Determine the total surface area

[tex]130\ units^2 + 104.81\ units^2 + 78\ units^2 + 91\ units^2 + 2(56\ units^2)[/tex]

[tex]515.81\ units^2[/tex]

Answer:  Option B, [tex]516.3\ units[/tex]