Respuesta :
Answer:
Option B, [tex]516.3\ units[/tex]
Step-by-step explanation:
Step 1: Determine the area of the back
[tex]A = l * w[/tex]
[tex]A = 10\ units * 13\ units[/tex]
[tex]A = 130\ units^2[/tex]
Step 2: Determine the hypotenuse
Pythagorean theorem → [tex]a^2 + b^2 = c^2[/tex]
[tex](10-6)^2\ units + 7^2\ units = c^2[/tex]
[tex]4^2\ units + 7^2\ units=c^2[/tex]
[tex]16\ units+49\ units=c^2[/tex]
[tex]\sqrt{65}=\sqrt{c^2}[/tex]
[tex]8.06 = c[/tex]
Step 3: Determine the area of the top
[tex]A = l * w[/tex]
[tex]A = 13\ units * 8.06\ units[/tex]
[tex]A = 104.81\ units^2[/tex]
Step 4: Determine the area of the front
[tex]A = l * w[/tex]
[tex]A = 13\ units * 6\ units[/tex]
[tex]A = 78\ units^2[/tex]
Step 5: Determine the area of the bottom
[tex]A = l * w[/tex]
[tex]A = 13\ units * 7\ units[/tex]
[tex]A = 91\ units^2[/tex]
Step 6: Determine the area of the trapezoid
[tex]A = \frac{a + b}{2} * h[/tex]
[tex]A = \frac{10\ units\ +\ 6\ units}{2}*7\ units[/tex]
[tex]A = 8\ units*7\ units[/tex]
[tex]A = 56\ units^2[/tex]
Step 7: Determine the total surface area
[tex]130\ units^2 + 104.81\ units^2 + 78\ units^2 + 91\ units^2 + 2(56\ units^2)[/tex]
[tex]515.81\ units^2[/tex]
Answer: Option B, [tex]516.3\ units[/tex]