Hi there!
For the graph on the left, we know that the area A is equal to:
[tex]A = \int\limits^a_0 {e^x} \, dx[/tex]
Area 'B' is 9 times this area, so:
[tex]B = 9 \cdot \int\limits^a_0 {e^x} \, dx[/tex]
We can evaluate the integral:
[tex]B = 9 \cdot \int\limits^a_0 {e^x} \, dx \\\\B = 9 \cdot e^x \left \| a}} \atop {0}} \right. \\\\B = 9 (e^a - 1)[/tex]
We also know that:
[tex]B = \int\limits^b_0 {e^x} \, dx[/tex]
Evaluate:
[tex]B = e^x \left \| b}} \atop {0}} \right. = e^b - 1[/tex]
Set the two equations for 'B' equal:
[tex]e^b - 1 = 9(e^a - 1)\\\\e^b - 1 = 9e^a - 9 \\\\e^b = 9e^a - 8[/tex]
Take the natural log of both sides:
[tex]ln(e^b) = ln(9e^a - 8)\\\\\boxed{b = ln(9e^a - 8)}[/tex]