Respuesta :
Answer:
1. a = 1
2. See explanation below.
Step-by-step explanation:
First Question
Given:
[tex]\displaystyle \large{\log_b a = 0}[/tex]
Convert to exponential:
[tex]\displaystyle \large{\log_b a = c \to b^c = a}[/tex]
Thus [tex]\displaystyle \large{\log_b a = 0 \to b^0 = a}[/tex]
Evaluate:
[tex]\displaystyle \large{b^0 = a}[/tex]
We know that for every values to power of 0 will always result in 1, excluding 0 to power of 0 itself.
Solution:
[tex]\displaystyle \large{a = 1}[/tex]
__________________________________________________________
Second Question
Given:
[tex]\displaystyle \large{log_0 3}[/tex] and [tex]\displaystyle \large{\log_1 3}[/tex]
Let’s convert to an equation:
[tex]\displaystyle \large{\log_0 3 = x}[/tex] and [tex]\displaystyle \large{\log_1 3 = y}[/tex]
The variables represent unknown values of logarithm.
Convert to exponential:
[tex]\displaystyle \large{0^x = 3}[/tex] and [tex]\displaystyle \large{1^y = 3}[/tex]
Notice that none of x-values and y-values will satisfy the equations. No matter what real numbers you put in, these equations will always be false.
Hence, no solutions for x and y.