Respuesta :
Answer: 6.7 kPa
Explanation:
Pressure Total = P(partial 1) + P(partial 2) + P(partial 3) →
94.5 kPa = 65.4 kPa + 22.4 kPa + P(partial 3) →
6.7 = P(partial 3) :)
Given:-
- Partial pressure of 1st gas ,P[tex]_1[/tex]= 65.4 kpa
- partial pressure of 2nd gas ,P[tex]_2[/tex]= 22.4 kpa
- Total pressure,P[tex]_o[/tex] = 94.5 kpa
To Find :-
- partial pressure of the 3rd gas,P[tex]_3[/tex]
Solution:-
According to the Dalton's law of partial pressures the total pressure exerted by a mixture of gases is equal to the sum of the partial pressures exerted by each individual gas in the mixture.
So, P[tex]_o[/tex] = P[tex]_1[/tex]+ P[tex]_2[/tex]+ P[tex]_3[/tex]
[tex]\longrightarrow[/tex]94.5 = 65.4+ 22.4 + P[tex]_3[/tex]
[tex]\longrightarrow[/tex]94.5 = 87.8+ P[tex]_3[/tex]
[tex]\longrightarrow[/tex] P[tex]_3[/tex] = 94.5 - 87.8
[tex]\longrightarrow[/tex]P[tex]_3[/tex] = 6.7 kpa
Therefore, partial pressure of the 3rd gas of the mixture is 6.7 kpa .