Solar19
contestada


Directions: Calculate the area of a circle using 3.14x the radius
1) d = 4.4 mm.
Calculate the area of the circle.

2) d = 3.7 cm.
Calculate the area of the circle.

3) r= 8.3 cm.
Calculate the area of the circle.

4) d = 5.8 yd.
Calculate the area of the circle.


5) d = 1 yd.
Calculate the area of the circle

6) r = 8 ft.
Calculate the area of the circle

Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}♨[/tex]

As we know ~

Area of the circle is :

[tex]\qquad \sf  \dashrightarrow \:\pi {r}^{2} [/tex]

And radius (r) = diameter (d) ÷ 2

[ radius of the circle = half the measure of diameter ]

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

Problem 1

[tex]\qquad \sf  \dashrightarrow \:r = d \div 2[/tex]

[tex]\qquad \sf  \dashrightarrow \:r = 4.4\div 2[/tex]

[tex]\qquad \sf  \dashrightarrow \:r = 2.2 \: mm[/tex]

Now find the Area ~

[tex]\qquad \sf  \dashrightarrow \: \pi {r}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:3.14 \times {(2.2)}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:3.14 \times {4.84}^{} [/tex]

[tex]\qquad \sf  \dashrightarrow \:area \approx 15.2 \: \: mm {}^{2} [/tex]

・ .━━━━━━━†━━━━━━━━━.・

problem 2

[tex]\qquad \sf  \dashrightarrow \:r = d \div 2[/tex]

[tex]\qquad \sf  \dashrightarrow \:r = 3.7 \div 2[/tex]

[tex]\qquad \sf  \dashrightarrow \:r = 1.85 \: \: cm[/tex]

Bow, calculate the Area ~

[tex]\qquad \sf  \dashrightarrow \: \pi {r}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:3.14 \times (1.85) {}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:3.14 \times 3.4225 {}^{} [/tex]

[tex]\qquad \sf  \dashrightarrow \:area \approx 10.75 \: \: cm {}^{2} [/tex]

・ .━━━━━━━†━━━━━━━━━.・

Problem 3

[tex]\qquad \sf  \dashrightarrow \:\pi {r}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:3.14 \times (8.3) {}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:3.14 \times 68.89[/tex]

[tex]\qquad \sf  \dashrightarrow \:area \approx216.31 \: \: cm {}^{2} [/tex]

・ .━━━━━━━†━━━━━━━━━.・

Problem 4

[tex]\qquad \sf  \dashrightarrow \:r = d \div 2[/tex]

[tex]\qquad \sf  \dashrightarrow \:r = 5.8 \div 2[/tex]

[tex]\qquad \sf  \dashrightarrow \:r = 2.9 \: \: yd[/tex]

now, let's calculate area ~

[tex]\qquad \sf  \dashrightarrow \:3.14 \times {(2.9)}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:3.14 \times 8.41 [/tex]

[tex] \qquad \sf  \dashrightarrow \:area \approx26.41 \: \: yd {}^{2} [/tex]

・ .━━━━━━━†━━━━━━━━━.・

problem 5

[tex]\qquad \sf  \dashrightarrow \:r = d \div 2[/tex]

[tex]\qquad \sf  \dashrightarrow \:r = 1 \div 2[/tex]

[tex]\qquad \sf  \dashrightarrow \:r = 0.5 \: \: yd[/tex]

Now, let's calculate area ~

[tex]\qquad \sf  \dashrightarrow \:\pi {r}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:3.14 \times (0.5) {}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:3.14 \times 0.25[/tex]

[tex]\qquad \sf  \dashrightarrow \:area \approx0.785 \: \: yd {}^{2} [/tex]

・ .━━━━━━━†━━━━━━━━━.・

problem 6

[tex]\qquad \sf  \dashrightarrow \:\pi {r}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:3.14 \times {(8)}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:3.14 \times 64[/tex]

[tex]\qquad \sf  \dashrightarrow \:area = 200.96 \: \: yd {}^{2} [/tex]

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖