What is the approximate area of the unshaded region under the standard normal curve below? Use the portion of the standard normal table given to help answer the question. A normal curve with a peak at 0 is shown. The area under the curve shaded is 1 to 2. Z Probability 0. 00 0. 5000 1. 00 0. 8413 2. 00 0. 9772 3. 00 0. 9987 0. 14 0. 16 0. 86 0. 98.

Respuesta :

The approximate area of the unshaded region under the standard normal curve is 0.86 the option third is correct.

It is given that the standard normal curve shows the shaded area in the curve.

It is required to find the approximate area of the unshaded region under the standard normal curve.

What is a normal distribution?

It is defined as the continuous distribution probability curve which is most likely symmetric around the mean. At Z=0, the probability is 50-50% on the Z curve. It is also called a bell-shaped curve.

In the curve showing the shaded region area between:

[tex]\rm P(1 < Z < 2)[/tex]

First, we calculate the shaded region area:

From the data given the value of Ф(1) = 0.8413.

P(Z<1)  = 0.8413  and

P(Z<2) =  0.9772

The area of the shaded region:

= P(Z<2) - P(Z<1)

=  0.9772 - 0.8413

= 0.1359

The area of the unshaded region:

= 1 - The area of the shaded region  ( because the curve is symmetric)

= 1 - 0.1359

= 0.8641 ≈ 0.86

Thus, the approximate area of the unshaded region under the standard normal curve is 0.86 the option third is correct.

Know more about the normal distribution here:

brainly.com/question/12421652