Respuesta :
Answer:
x= 5
Step-by-step explanation:
Since RQ= PQ,
3x= 15
Divide both sides by 3:
x= 15 ÷3
[tex]\textcolor{red}{x = 5}[/tex]
[tex]\textcolor{steelblue}{\text{Prove for RQ}= \text{PQ}}[/tex]
Let SP= x
RS= SP= x (given)
Let SQ= y
Applying Pythagoras' Theorem,
In triangle QRS
(RQ)²= (RS)² +(SQ)²
(RQ)²= x² +y²
[tex]RQ = \sqrt{ {x}^{2} + {y}^{2} } [/tex]
In triangle QPS
(PQ)²= (SP)² +(SQ)²
(PQ)²= x² +y²
[tex]PQ = \sqrt{ {x}^{2} + {y}^{2} } [/tex]
Thus, RQ= PQ.