Respuesta :

Answer:

3x = 15

x = 5

Step-by-step explanation:

Answer:

x= 5

Step-by-step explanation:

Since RQ= PQ,

3x= 15

Divide both sides by 3:

x= 15 ÷3

[tex]\textcolor{red}{x = 5}[/tex]

[tex]\textcolor{steelblue}{\text{Prove for RQ}= \text{PQ}}[/tex]

Let SP= x

RS= SP= x (given)

Let SQ= y

Applying Pythagoras' Theorem,

In triangle QRS

(RQ)²= (RS)² +(SQ)²

(RQ)²= x² +y²

[tex]RQ = \sqrt{ {x}^{2} + {y}^{2} } [/tex]

In triangle QPS

(PQ)²= (SP)² +(SQ)²

(PQ)²= x² +y²

[tex]PQ = \sqrt{ {x}^{2} + {y}^{2} } [/tex]

Thus, RQ= PQ.