Respuesta :
Answer:
- Length and width of rectangle is 24 and 8 inches
Step-by-step explanation:
Given:
- Length of rectangle is three times the width
- Perimeter of rectangle is 64 Inches
To Find:
- Length and Width
Solution:
Let's assume Width of rectangle x inches and length be 3x inches. To calculate the dimensions of The rectangle we will use the formula of Perimeter of rectangle:
Perimeter of rectangle = 2(L + B)
→ 64 = 2(3x + x)
→ 64 = 2(4x)
→ 64/2 = 4x
→ 32 = 4x
→ 32/4 = x
→ 8 = x
Hence,
- Length of the rectangle = 3x = 3(8) = 24 inches
- Width of the rectangle = x = 8 inches
Answer:
- Length = 24 inches
- Width = 8 inches
⠀
Step-by-step explanation :
⠀
As it is given that, the legnth of a rectangle is three times its width and the perimeter is 64 in and we are to find the length and width of the rectangle. So,
⠀
Let us assume the width of the rectangle as w inches and therefore, the length will be 3w inches .
⠀
Now, According to the Question :
⠀
[tex]{\longrightarrow \qquad { \pmb{\frak {2 ( Length + Breadth )= Perimeter_{(Rectangle)} }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{2 (3 x + x )= 64 }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{2 (4x )= 64 }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{8x= 64 }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{ x = \dfrac{64}{8} }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad{ \underline{ \boxed { \pmb{\mathfrak {x = 8}} }}} }\: \: \bigstar[/tex]
⠀
Therefore,
- The width of the rectangle is 8 inches .
⠀
Now, We are to find the length of the rectangle:
[tex]{\longrightarrow \qquad{ { \frak{\pmb{Length = 3x }}}}}[/tex]
⠀
[tex]{\longrightarrow \qquad{ { \frak{\pmb{Length = 3 \times 8 }}}}}[/tex]
⠀
[tex]{\longrightarrow \qquad{ \underline{ \boxed{ \frak{\pmb{Length = 24}}}}}} \: \: \bigstar[/tex]
⠀
Therefore,
- The length of the rectangle is 24 inches .
⠀