Respuesta :
to get the equation of any straight line, we simply need two points off of it, let's use the points from the picture below.
[tex](\stackrel{x_1}{8}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{12}~,~\stackrel{y_2}{5}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{5}-\stackrel{y1}{3}}}{\underset{run} {\underset{x_2}{12}-\underset{x_1}{8}}}\implies \cfrac{2}{4}\implies \cfrac{1}{2}[/tex]
[tex]\begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{3}=\stackrel{m}{\cfrac{1}{2}}(x-\stackrel{x_1}{8}) \\\\\\ y-3=\cfrac{1}{2}x-4\implies y=\cfrac{1}{2}x-1[/tex]
if we already have the slope, and we can see the y-intercept on the table, then we can simply use the slopel-intercept form and plug both of them in.
[tex]\begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}\qquad \begin{array}{|c|ll} \cline{1-1} slope\\ \cline{1-1} \cfrac{1}{2}\\ \cline{1-1} y-intercept&\\\cline{1-1} (0~~,~~-1)\\ \cline{1-1} \end{array}~\hfill y=\cfrac{1}{2}x-1[/tex]