Respuesta :
Answer:
There are 6 congruent triangles in a regular hexagon.
The triangles are equilateral (all sides are equal in length).
Using side length of equilateral triangle formula:
[tex]\sf x=\sqrt{\dfrac{4}{3}h^2}[/tex]
where x is the side length and h is the height
[tex]\sf \implies x=\sqrt{\dfrac{4}{3}\cdot 6^2}[/tex]
[tex]\sf \implies x=\sqrt{48}[/tex]
[tex]\sf \implies x=4\sqrt{3} \ units[/tex]
Therefore, perimeter = 6 × 4√3 = 24√3 units
Radius = side length of triangle = 4√3 units
- 6 congruent traingles
Side Be a
[tex]\\ \rm\rightarrowtail h=\dfrac{\sqrt{3}}{2}a[/tex]
[tex]\\ \rm\rightarrowtail 6=\dfrac{\sqrt{3}}{2}a[/tex]
[tex]\\ \rm\rightarrowtail 12=\sqrt{3}a[/tex]
[tex]\\ \rm\rightarrowtail a=12/\sqrt{3}[/tex]
[tex]\\ \rm\rightarrowtail a=4\sqrt{3}[/tex]
Perimeter:-
- 4(4√3)=16√3units