Respuesta :

length : [tex]\sf \sqrt{89}[/tex]

Explanation:

use the distance formula : [tex]\sf \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

  • using the formula:

[tex]\sf \rightarrow \sf \sf \sqrt{(7--1)^2+(4-9)^2}[/tex]

[tex]\sf \rightarrow \sf \sf \sqrt{(8)^2+(-5)^2}[/tex]

[tex]\sf \rightarrow \sf \sf \sqrt{64+25}[/tex]

[tex]\sf \rightarrow \sf \sf \sqrt{89}[/tex]

Answer:

[tex]\sf \sqrt{89}[/tex]

Step-by-step explanation:

Let A = [tex]\sf (x_1,y_1)[/tex] = (-1, 9)

Let B = [tex]\sf (x_2,y_2)[/tex] = (7, 4)

Distance formula:

[tex]\sf d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Input values into the distance formula and solve for d:

[tex]\sf \implies d=\sqrt{(7-(-1))^2+(4-9)^2}[/tex]

[tex]\sf \implies d=\sqrt{8^2+(-5)^2}[/tex]

[tex]\sf \implies d=\sqrt{64+25}[/tex]

[tex]\sf \implies d=\sqrt{89}[/tex]