Respuesta :
[tex]\qquad\qquad\huge\underline{{\sf Answer}}♨[/tex]
Here's the solution ~
[tex]\qquad \sf \dashrightarrow \: \dfrac{2 {}^{n} - 1}{ {4}^{n} - 1} [/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{2 {}^{n} - 1}{ {( {2}^{2}) }^{n} - 1} [/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{2 {}^{n} - 1}{ {( {2}^{n}) }^{2} - 1} [/tex]
Now we will use this identity in denominator
[ a² - b² = (a + b)(a - b) ]
[tex]\qquad \sf \dashrightarrow \: \dfrac{ \cancel{(2 {}^{n} - 1)}}{ {( {2}^{n} }^{} + 1) \cancel{( {2}^{n} - 1)}} [/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{ 1}{ {( {2}^{n} }^{} + 1) } [/tex]
Answer:
[tex]\sf \dfrac{1}{2^n+1}[/tex]
Step-by-step explanation:
Given expression:
[tex]\sf \dfrac{2^n-1}{4^n-1}[/tex]
Rewrite [tex]\sf 4^n[/tex]: [tex]\sf 4^n=(2^2)^n=2^{2n}=(2^n)^2[/tex]
Rewrite 1: 1 = 1²
[tex]\sf \implies \dfrac{2^n-1}{(2^n)^2-1^2}[/tex]
Apply difference of two square formula to the denominator
[tex]\sf a^2-b^2=(a+b)(a-b)[/tex]
[tex]\sf \implies \dfrac{2^n-1}{(2^n+1)(2^n-1)}[/tex]
Cancel out the common factor [tex]\sf 2^n-1[/tex] :
[tex]\sf \implies \dfrac{1}{2^n+1}[/tex]