Answer:
t = [tex]\frac{14}{5}[/tex]
Step-by-step explanation:
Parallel lines have equal slopes.
calculate the slope m of PQ and then equate the slope of AB to slope of PQ
calculate m using the slope formula
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = P (- 2, 4 ) and (x₂, y₂ ) = Q (4, - 1 )
[tex]m_{PQ}[/tex] = [tex]\frac{-1-4}{4-(-2)}[/tex] = [tex]\frac{-5}{4+2}[/tex] = - [tex]\frac{5}{6}[/tex]
now calculate slope of AB
with (x₁, y₁ ) = A (4, - 3 ) and (x₂, y₂ ) = B (t, - 2 )
[tex]m_{AB}[/tex] = [tex]\frac{-2-(-3)}{t-4}[/tex] = [tex]\frac{-2+3}{t-4}[/tex] = [tex]\frac{1}{t-4}[/tex]
equating the slopes gives
[tex]\frac{1}{t-4}[/tex] = - [tex]\frac{5}{6}[/tex] ( cross- multiply )
5(t - 4) = - 6
5t - 20 = - 6 ( add 20 to both sides )
5t = 14 ( divide both sides by 5 )
t = [tex]\frac{14}{5}[/tex]