Respuesta :

[tex]\textit{volume of a hemisphere}\\\\ V=\cfrac{1}{2}\cdot \cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ V=74466 \end{cases}\implies 74466=\cfrac{1}{2}\cdot \cfrac{4\pi r^3}{3} \\\\\\ 74466=\cfrac{2\pi r^3}{3}\implies 223398=2\pi r^3\implies \cfrac{22398}{2\pi }=r^3\implies \cfrac{111699}{\pi }=r^3 \\\\\\ \sqrt[3]{\cfrac{111699}{\pi }}=r~\hfill \stackrel{\textit{diameter = 2r}}{2\sqrt[3]{\cfrac{111699}{\pi }}\implies \sqrt[3]{\cfrac{893592}{\pi }}}~~ \boxed{\approx~~65.77}[/tex]