Respuesta :

solution:

[tex]\frac{299}{6}=49\frac{5}{6}[/tex]

decimal result:

[tex]49.833[/tex]

1. Simplify the expression

[tex]26/3*23/4[/tex]

Multiply the fractions:

[tex]\frac{\left(26\cdot23\right)}{\left(3\cdot4\right)}[/tex]

Cancel terms:

[tex]\frac{\left(13\cdot23\right)}{\left(3\cdot2\right)}[/tex]

Simplify the arithmetic:

[tex]\frac{299}{\left(3\cdot2\right)}[/tex]

Simplify the arithmetic:

[tex]\frac{299}{6}[/tex]

Simplify the fraction:

[tex]\frac{299}{6} =49\frac{5}{6}[/tex]

Hello!

[tex]==========================================[/tex]

First, let's convert the mixed numbers into improper fractions:-

[tex]\bf{8\displaystyle\frac{2}{3}[/tex]

Step 1:-

  • Multiply the whole number (8) times the denominator (3). The product is 24.
  • Add the numerator (2). The sum is 26.
  • The denominator stays the same.
  • Thus, the fraction is

[tex]\displaystyle\frac{26}{3}[/tex]

Now, do the same for the second fraction:-

  • Multiply 5 times 4. The product is 20
  • Add 3. The sum is 23.
  • The denominator stays the same.
  • Thus, the fraction is

[tex]\displaystyle\frac{23}{4}[/tex]

Now, the formula for the area is

[tex]\bold{A=bh}[/tex]

We know both b and h, so we can just plug in the values and solve:

[tex]\bold{A=\displaystyle\frac{26}{3} *\frac{23}{4} }}[/tex]

Actually, we can reduce some fractions here (we can divide 26 and 4 by 2)

[tex]\bold{\displaystyle\frac{13}{3} *\frac{23}{2}}[/tex]

Multiplying 13 times 23 is easier than multiplying 26 times 13.

Now, this can only be done if the numbers do have some common factors. Both fractions are now in simplest form; 13, 23, 3 & 2 don't have common factors.

Multiply:

[tex]\bold{\displaystyle\frac{13*23}{3*2}}}[/tex]

The answer is

[tex]\bold{\displaystyle\frac{299}{6}}[/tex]

Convert to a Mixed Number:-

[tex]\bold{49\displaystyle\frac{5}{6}}[/tex]

[tex]==================================[/tex]

Notes:-

  • Hope everything is clear.
  • Let me know if you have any questions!
  • Always remember: [tex]\boxed{Knowledge~Is~Power!}[/tex]
  • Good luck & enjoy your day!

Answered by:-

Nickname:- [tex]\mathbb{DiAmOnD}[/tex]

[tex]\boxed{An~emotional~helper}[/tex]