now, this is assuming the compounding period is annually, so
[tex]~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$2000\\ r=rate\to 2\%\to \frac{2}{100}\dotfill &0.02\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\dotfill &1\\ t=years\dotfill &7 \end{cases} \\\\\\ A=2000\left(1+\frac{0.02}{1}\right)^{1\cdot 7}\implies A=2000(1.02)^7\implies A\approx 2297.37[/tex]