Respuesta :

Answer:

  • Length of rectangle is 32 feet and width is 10 feet

Step-by-step explanation:

Given,

  • The length of a rectangle is 12 feet more than twice the width and area is 320 square feet

Let's assume, width of rectangle x feet and length of the Rectangle be 12 + 2x respectively. To Calculate the length and width of rectangle we'll use the formula of area of rectangle:

[tex] \\ \star \: { \underline{ \boxed { \pmb{ \sf{ \purple{Area _{(rectangle)}= Length \times width}}}}}} \\ \\ [/tex]

Substituting the required values:

[tex]\dashrightarrow \sf \: \: \: \: (12 +2x) (x) = 320 \\ [/tex]

[tex]\dashrightarrow \sf \: \: \: \: 12x + 2x^2 = 320 \\ [/tex]

[tex]\dashrightarrow \sf \: \: \: \: 12x + 2x^2- 320 = 0 \\ [/tex]

[tex]\dashrightarrow \sf \: \: \: \: 2x^2 + 12 - 320 = 0 \\ [/tex]

[tex]\dashrightarrow \sf \: \: \: \: 2(x^2 + 6x - 160) = 0 \\ [/tex]

[tex] \dashrightarrow \sf \: \: \: \: 2(x^2 + 16x - 10x - 160) = 0 \\ [/tex]

[tex]\dashrightarrow \sf \: \: \: \: 2(x - 10)(x + 16) = 0 \\ [/tex]

[tex]\dashrightarrow \: \: \: \: \underline{ \boxed{ \purple{ \pmb{ \rm{ x = 10 \: or \: -16}}}}} \\ [/tex]

Hence,

  • Width of rectangle = x = 10 feet
  • Length of rectangle = 12 + 2x = 12 + 2(10) = 32 feet

[tex]~[/tex]

[tex] \underline{\therefore{ \pmb { \frak{Length \: and \: width \: of \: rectangle \: is \: 32 \: and \: 10 \:ft}}}}[/tex]