Respuesta :
[tex]\qquad\qquad\huge\underline{{\sf Answer}}☂[/tex]
Let's solve, using Trigonometry ~
[tex]\qquad \sf \dashrightarrow \: \tan(x) = \frac{54}{72} [/tex]
[tex]\qquad \sf \dashrightarrow \: \tan(x) = \frac{3}{4} [/tex]
[tex]\qquad \sf \dashrightarrow \:x = \tan { }^{ - 1} ( \frac{3}{4} ) [/tex]
[tex]\qquad \sf \dashrightarrow \:x = 37 \degree[/tex]
Answer:
[tex]\displaystyle 36,9[/tex]
Step-by-step explanation:
[tex]\displaystyle 1\frac{1}{3} = cot\:x \hookrightarrow cot^{-1}\:1\frac{1}{3} = x \hookrightarrow 36,869897646...° = x \\ \\ 36,9° ≈ x[/tex]
OR
[tex]\displaystyle \frac{3}{4} = tan\:x \hookrightarrow tan^{-1}\:\frac{3}{4} = x \hookrightarrow 36,869897646...° = x \\ \\ 36,9° ≈ x[/tex]
Information on trigonometric ratios
[tex]\displaystyle \frac{OPPOCITE}{HYPOTENUSE} = sin\:θ \\ \frac{ADJACENT}{HYPOTENUSE} = cos\:θ \\ \frac{OPPOCITE}{ADJACENT} = tan\:θ \\ \frac{HYPOTENUSE}{ADJACENT} = sec\:θ \\ \frac{HYPOTENUSE}{OPPOCITE} = csc\:θ \\ \frac{ADJACENT}{OPPOCITE} = cot\:θ[/tex]
I am joyous to assist you at any time.