Respuesta :
Answer:
[tex]\sf y = \bold -\frac{2}{5} x -3[/tex]
Explanation:
part A identification for slope:
[tex]\sf 2x + 5y = 15[/tex]
[tex]\sf 5y = -2x + 15[/tex]
[tex]\sf y = \frac{-2x + 15}{5}[/tex]
[tex]\sf y = -\frac{2 }{5} x+3[/tex]
comparing with slope intercept form: y = mx + b
we can find that here the slope is [tex]\bold -\frac{2}{5}[/tex]
part B, solving the equation:
if the line is parallel, then the slope will be same.
given coordinates: ( - 10, 1 )
using the equation:
y - y₁ = m( x - x₁ )
[tex]\sf y - 1 = \bold -\frac{2}{5} (x --10)[/tex]
[tex]\sf y = \bold -\frac{2}{5} x -4 + 1[/tex]
[tex]\sf y = \bold -\frac{2}{5} x -3[/tex]
Extra information:
check the image below. this proves that the line is parallel and passes through point (-10, 1). the blue line is question line and red the answer line.
Solution:
Step-1: Convert the line into slope intercept form.
- 2x + 5y = 15
- => 5y = -2x + 15
- => y = -0.4x + 3
Step-2: Use the point slope form formula.
- y - y₁ = m(x - x₁)
- => y - 1 = -0.4{x - (-10)}
- => y - 1 = -0.4{x + 10}
- => y - 1 = -0.4x - 4
- => y = -0.4x - 3