Respuesta :
Answer:
Therefore he can use inequality C because profit cannot be in less than and should be with greater than.
Step-by-step explanation:
A
[tex]\sf \hookrightarrow 12t - 100 < 0[/tex]
[tex]\sf \hookrightarrow 12t < 100[/tex]
[tex]\sf \hookrightarrow t < \frac{100}{12}[/tex]
[tex]\sf \hookrightarrow t < \frac{25}{3}[/tex]
B
[tex]\sf \hookrightarrow 12t + 100 > 0[/tex]
[tex]\sf \hookrightarrow 12t < -100[/tex]
[tex]\sf \hookrightarrow t > -\frac{100}{12}[/tex]
[tex]\sf \hookrightarrow t > -\frac{25}{3}[/tex]
C
[tex]\sf \hookrightarrow 12t - 100 > 0[/tex]
[tex]\sf \hookrightarrow 12t > 100[/tex]
[tex]\sf \hookrightarrow t > \frac{100}{12}[/tex]
[tex]\sf \hookrightarrow t > \frac{25}{3}[/tex]
D
[tex]\sf \hookrightarrow 12t + 100 < 0[/tex]
[tex]\sf \hookrightarrow 12t < -100[/tex]
[tex]\sf \hookrightarrow t < \frac{ -100}{12}[/tex]
[tex]\sf \hookrightarrow t < -\frac{25}{3}[/tex]
Answer:
C) 12t - 100 > 0
Step-by-step explanation:
Let t = number of t-shirts sold
He will need to subtract the supply cost ($100) from the selling price of the t-shirts. The final amount will need to be greater than zero for it to be profit.
12t - 100 > 0