Respuesta :
Answer:
[tex]\sf y = -2\frac{1}{9} x[/tex]
linear function solve:
coordinates given: (0,0), (-9,19)
slope:
[tex]\sf \frac{y2-y1}{x2-x1}[/tex]
[tex]\sf \frac{19-0}{-9-0}[/tex]
[tex]\sf \frac{19}{-9}[/tex]
equation:
[tex]\sf y - y_2 = m(x-x_2 )[/tex]
[tex]\sf y - 0 = \frac{19}{-9} (x-0 )[/tex]
[tex]\sf y = \frac{19}{-9} x[/tex]
[tex]\sf y = -2\frac{1}{9} x[/tex]
Answer:
[tex]f(x)=-\dfrac{19}{9}x[/tex]
Step-by-step explanation:
Let [tex](x_1,y_1)[/tex] = (0, 0)
Let [tex](x_2,y_2)[/tex] = (-9, 19)
First find the slope of the function using [tex]\textsf{slope }m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\implies \textsf{slope }m=\dfrac{19-0}{-9-0}=-\dfrac{19}{9}[/tex]
Now use the point-slope form of a linear equation: [tex]y-y_1=m(x-x_1)[/tex]
[tex]\implies y-19=-\dfrac{19}{9}(x+9)[/tex]
[tex]\implies y=-\dfrac{19}{9}x[/tex]
[tex]\implies f(x)=-\dfrac{19}{9}x[/tex]