Respuesta :

Answer: x=4, x=-5

Step-by-step explanation:

[tex]\frac{x}{x-4}-\frac{4}{x+5}=\frac{36}{x^2+x-20}[/tex]

Multiply everything by the LCM = (x-4)(x+5):

[tex]\frac{x}{x-4}\left(x-4\right)\left(x+5\right)-\frac{4}{x+5}\left(x-4\right)\left(x+5\right)=\frac{36}{x^2+x-20}\left(x-4\right)\left(x+5\right)[/tex]

[tex]\frac{x\left(x-4\right)\left(x+5\right)}{x-4} -\frac{4\left(x-4\right)\left(x+5\right)}{x+5} =\frac{36\left(x-4\right)\left(x+5\right)}{\left(x-4\right)\left(x+5\right)}[/tex]

Simplify by cancelling out same terms: in the numerators and denominators:

[tex]x\left(x+5\right)-4\left(x-4\right)=36[/tex]

[tex]x^2+x-20=0[/tex]

(x+5)(x-4) = 0

The solution to the quadratic equation is x=4, x=-5