Answer:
Step-by-step explanation:
[tex]\frac{dy}{dx}=x^{2}(y-1)\\\frac{1}{y-1} \text{ } dy=x^{2} \text{ } dx\\\int \frac{1}{y-1} \text{ } dy=\int x^{2} \text{ } dx\\\ln|y-1|=\frac{x^{3}}{3}+C\\[/tex]
From the initial condition,
[tex]\ln|3-1|=\frac{0^{3}}{3}+C\\\ln 2=C[/tex]
So we have that [tex]\ln |y-1|=\frac{x^{3}}{3}+\ln 2\\e^{\frac{x^{3}}{3}+\ln 2}=y-1\\2e^{\frac{x^{3}}{3}}=y-1\\y=2e^{\frac{x^{3}}{3}}+1[/tex]