Respuesta :
Convert g(x) to vertex form
- y=x²+8
- y=(x-0)²+8
Vertex at (0,8)
- f(x) has vertex (0,0)
Hence
- f(x) is translated 8 units up
Option D
Answer:
D. The graph of g(x) is 8 units above the graph of f(x)
Step-by-step explanation:
Transformations
For [tex]a > 0[/tex]
[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]
[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]
[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]
[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]
Parent function: [tex]f(x)=x^2[/tex]
Translated 8 units up: [tex]f(x)+8=x^2+8[/tex]
Therefore, the graph of g(x) is 8 units above the graph of f(x)