Respuesta :

In this case to calculate the limit, you simply plug the x value of -2 into the function

[tex]y = \lim_{x \to \--2}( -3x^3+2x^2-4x+5) = 24 + 8+8+5 = 45\\[/tex]

So the limit equals 45.

Hope that helps!

Space

Answer:

[tex]\displaystyle y = 45[/tex]

General Formulas and Concepts:
Calculus

Limits

Limit Rule [Variable Direct Substitution]:                                                                [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle y = \lim_{x \to -2} \big[ -3x^3 + 2x^2 - 4x + 5][/tex]

Step 2: Find Limit

  1. [Limit] Limit Rule [Variable Direct Substitution]:                                         [tex]\displaystyle y = -3(-2)^3 + 2(-2)^2 - 4(-2) + 5[/tex]
  2. Evaluate:                                                                                                       [tex]\displaystyle y = 45[/tex]

∴ the limit as x approaches -2 of the given function -3x³ + 2x² - 4x + 5 is equal to 45.

---

Learn more about limits: https://brainly.com/question/26091024

Learn more about calculus: https://brainly.com/question/26752465

---

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits