Respuesta :
In this case to calculate the limit, you simply plug the x value of -2 into the function
[tex]y = \lim_{x \to \--2}( -3x^3+2x^2-4x+5) = 24 + 8+8+5 = 45\\[/tex]
So the limit equals 45.
Hope that helps!
Answer:
[tex]\displaystyle y = 45[/tex]
General Formulas and Concepts:
Calculus
Limits
Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle y = \lim_{x \to -2} \big[ -3x^3 + 2x^2 - 4x + 5][/tex]
Step 2: Find Limit
- [Limit] Limit Rule [Variable Direct Substitution]: [tex]\displaystyle y = -3(-2)^3 + 2(-2)^2 - 4(-2) + 5[/tex]
- Evaluate: [tex]\displaystyle y = 45[/tex]
∴ the limit as x approaches -2 of the given function -3x³ + 2x² - 4x + 5 is equal to 45.
---
Learn more about limits: https://brainly.com/question/26091024
Learn more about calculus: https://brainly.com/question/26752465
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits