Respuesta :
The Equation of the Line Passing through the given Points (1, 1) and (5, 5) is x - y = 0. :)
[tex](\stackrel{x_1}{-5}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{5}~,~\stackrel{y_2}{-5}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-5}-\stackrel{y1}{1}}}{\underset{run} {\underset{x_2}{5}-\underset{x_1}{(-5)}}}\implies \cfrac{-6}{5+5}\implies \cfrac{-6}{10}\implies -\cfrac{3}{5}[/tex]
[tex]\begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{1}=\stackrel{m}{-\cfrac{3}{5}}(x-\stackrel{x_1}{(-5)}) \implies y-1=-\cfrac{3}{5}(x+5) \\\\\\ y-1=-\cfrac{3}{5}x-3\implies y=-\cfrac{3}{5}x-2[/tex]