teh face of a circular game token has an area of 10pi cm to the second power. what is the diameter of the coin token. round to the nearest hundredth of a centimeter

Respuesta :

Answer:

6.32 cm

Step-by-step explanation:

Area of a circle = [tex]\pi r^2[/tex]   (where r is the radius)

Given area = [tex]10\pi[/tex] cm²

⇒ [tex]10\pi=\pi r^2[/tex]

[tex]\implies 10=r^2[/tex]

[tex]\implies r=\sqrt{10}[/tex]

Diameter = 2r    (where r is the radius)

[tex]\implies d=2r=2\sqrt{10}=6.32[/tex] cm (nearest hundredth)

Area of a circle = [tex]πr²[/tex]

Given area = [tex]10π cm²[/tex]

[tex]\bold\red{ ⇒} 10π = πr²[/tex]

[tex]\bold\red{⇒ } 10 = r²[/tex]

[tex]\bold\red{⇒ } r = \sqrt{10}[/tex]

Diameter = [tex]2r[/tex]

[tex]\bold\red{⇒}2\sqrt{10} =\bold\pink{6.32 cm} [/tex] [tex]\bold\green{ [nearest \: hundredth]}[/tex]