Answer:
[tex]\sf y=-\frac{5}{2}x+\frac{27}{2}[/tex]
Step-by-step explanation:
given equation:
[tex]\sf y = \frac{2}{5} x -1[/tex]
using the formula: y = mx + b
Here, we can determine 2/5 is the slope
if perpendicular: -1/m → -1/2/5 → -5/2
using the formula:
[tex]\sf y - y1 = m ( x - x1)[/tex]
[tex]\sf y - 6 = -\frac{5}{2} ( x - 3 )[/tex]
[tex]\sf y - 6 = -\frac{5}{2} x - \frac{15}{2}[/tex]
[tex]\sf y = -\frac{5}{2} x + \frac{15}{2} +6[/tex]
[tex]\sf y=-\frac{5}{2}x+\frac{27}{2}[/tex]