Respuesta :
Answer:
[tex]\frac{1}{5^{9} }[/tex]
Step-by-step explanation:
[tex]\frac{5^{-6} }{5^{3} }[/tex]
Rewrite [tex]5^{3}[/tex] as [tex]5^{-6}[/tex] × [tex]5^{9}[/tex]. Cancel out [tex]5^{-6}[/tex] in both numerator and denominator.
= [tex]\frac{1}{5^{9} }[/tex]
Hope it helps and have a great day! =D
~sunshine~
Answer:
[tex]\mathrm{The\:first\:option}:\quad\dfrac{ 1 }{ { 5 }^{ 9 } }[/tex]
Step-by-step explanation:
[tex]\dfrac{ { 5 }^{ -6 } }{ { 5 }^{ 3 } }[/tex]
[tex]\mathrm{Apply\:exponent\:rule}:\quad \dfrac{ { x }^{ a } }{ { x }^{ b } } = { x }^{ a-b }[/tex]
[tex]= { 5 }^{ -6-3 }[/tex]
[tex]\mathrm{Subtract\:the\:numbers:}\:-6-3=-9[/tex]
[tex]=5^{-9}[/tex]
[tex]\mathrm{Apply\:exponent\:rule}:\quad \:{ a }^{ -b } = \dfrac{ 1 }{ { a }^{ b } }[/tex]
[tex]\dfrac{ 1 }{ { 5 }^{ 9 } }[/tex]
So the correct answer would be:
[tex]\mathrm{The\:first\:option}:\quad\dfrac{ 1 }{ { 5 }^{ 9 } }[/tex]