Respuesta :

The value of the expression is 21 :)

Given Equation:-

[tex] \sf25 - 12 \div [(8 - 5) \times 1][/tex]

[tex] \\ \\ [/tex]

Step-by-step explanation:-

[tex] \\ [/tex]

[tex] \dashrightarrow \sf25 - 12 \div [(8 - 5) \times 1][/tex]

first write the equation so that you'll emit minor mistakes of writing wrong digits.

[tex] \\ [/tex]

[tex] \dashrightarrow \sf25 - 12 \div [(3) \times 1][/tex]

subtract 8 and 5 , which will give us result as 3

[tex] \\ [/tex]

[tex] \dashrightarrow \sf25 - 12 \div [3 \times 1][/tex]

open the brakets that contains 3.

[tex] \\ [/tex]

[tex] \dashrightarrow \sf25 - 12 \div [3][/tex]

multiply 3 with 1 which will result 3.

[tex] \\ [/tex]

[tex] \dashrightarrow \sf25 - 12 \div 3[/tex]

open the brakets of 3.

[tex] \\ [/tex]

[tex] \dashrightarrow \sf25 - \dfrac{12}{3} [/tex]

to make it easy to understand I have converted it into fraction form.

[tex] \\ [/tex]

[tex] \dashrightarrow \sf25 - \dfrac{2 \times 2 \times 3}{3} [/tex]

simplify 12 which is contained in numerator.

[tex] \\ [/tex]

[tex] \dashrightarrow \sf25 - \dfrac{2 \times 2 \times \cancel3}{\cancel3} [/tex]

as we can see after converting into fraction 3 is common both in numerator and denominator. So cancel ir.

[tex] \\ [/tex]

[tex] \dashrightarrow \sf25 - (2 \times 2)[/tex]

we no longer need the fraction as 3 is canceled.

[tex] \\ [/tex]

[tex] \dashrightarrow \sf25 -4[/tex]

multiply 2 with 2 which will result 4.

[tex] \\ [/tex]

[tex] \dashrightarrow \bf21[/tex]

finally after subtracting 25 and 4 , we got our answer as 21.

[tex] \\ [/tex]

Rule applied:-

B : bracket

O : on/off

D: divide

M : multiply

A : add

S : subtract