well, we know is a line, and to get the equation of any straight line all we need is two points, hmmm let's use from the table hmm say (2 , -50) and hmmm (4 , -88)
[tex](\stackrel{x_1}{2}~,~\stackrel{y_1}{-50})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{-88}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-88}-\stackrel{y1}{(-50)}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{2}}}\implies \cfrac{-88+50}{2}\implies \cfrac{-38}{2}\implies -19[/tex]
[tex]\begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-50)}=\stackrel{m}{-19}(x-\stackrel{x_1}{2}) \\\\\\ y+50=-19x+38\implies y=-19x-12[/tex]