A mathematical proof can be carried out by mathematical induction and by contradiction
The function is given as:
[tex]d(n) = \frac{n(n + 1)}{2}[/tex]
When n = 1, we have:
[tex]d(1) = \frac{1(1 + 1)}{2}[/tex]
[tex]d(1) = 2[/tex]
When n = k, the function becomes
[tex]d(k) = \frac{k(k + 1)}{2}[/tex]
When n = k + 1, the function becomes
[tex]d(k) + k + 1 = \frac{k(k + 1)}{2} + k + 1[/tex]
Open the bracket
[tex]d(k) + k + 1 = \frac{k^2 + k}{2} + k + 1[/tex]
Take the LCM
[tex]d(k) + k + 1 = \frac{k^2 + k + 2k + 2}{2}[/tex]
Factorize
[tex]d(k) + k + 1 = \frac{k(k + 1) + 2(k + 1)}{2}[/tex]
Factor out k + 1
[tex]d(k) + k + 1 = \frac{(k + 2)(k + 1)}{2}[/tex]
This gives
[tex]d(k + 1)= \frac{(k + 2)(k + 1)}{2}[/tex]
Because k + 1 satisfies the given function, then the function [tex]d(n) = \frac{n(n + 1)}{2}[/tex] has been proved by induction
Read more about induction at:
https://brainly.com/question/1979616