The amount of medication in Sameeha's system after she takes her last dose of the medication is (d) 83.20
The function is given as:
f(t) = 0.40t + 50
Where
t0 = 50
This means that:
On day 1, we have:
[tex]f(50) = 0.40 * 50 + 50[/tex]
[tex]f(50) = 70[/tex]
On day 2, we have:
[tex]f(70) = 0.40 * 70 + 50[/tex]
[tex]f(70) = 78[/tex]
On day 3, we have:
[tex]f(78) =0.40 * 78 + 50[/tex]
[tex]f(78) =81.2[/tex]
On day 4, we have:
[tex]f(81.2) = 0.40 * 81.2 +50[/tex]
[tex]f(81.2) = 82.48[/tex]
On day 5, we have:
[tex]f(82.48) = 0.40 * 82.48 + 50[/tex]
[tex]f(82.48) = 82.99[/tex]
On day 6, we have:
[tex]f(82.99) = 0.40 * 82.99 + 50[/tex]
[tex]f(82.99) = 83.20[/tex]
Hence, the amount of medication in Sameeha's system after she takes her last dose of the medication is (d) 83.20
Read more about linear functions at:
https://brainly.com/question/15602982