Respuesta :

[tex](\stackrel{x_1}{-3}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{6}~,~\stackrel{y_2}{8}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{8}-\stackrel{y1}{5}}}{\underset{run} {\underset{x_2}{6}-\underset{x_1}{(-3)}}}\implies \cfrac{3}{6+3}\implies \cfrac{3}{9}\implies \cfrac{1}{3}[/tex]

[tex]\begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{5}=\stackrel{m}{\cfrac{1}{3}}(x-\stackrel{x_1}{(-3)}) \\\\\\ y-5=\cfrac{1}{3}(x+3)\implies y-5=\cfrac{1}{3}x+1\implies y=\cfrac{1}{3}x+6[/tex]