Respuesta :
Similar triangles may or may not have equal side lengths
Triangles ABC and DEF are similar by SSS theorem
How to determine the similarity statement
The coordinates of the two triangles are:
A (0,0), B (4,0), C (0,2), D (0,0), E (2,0), and F (0,1)
Calculate the lengths of both triangles using the following distance formula
[tex]d = \sqrt{(x_2 -x_1)^2 + (y_2 -y_1)^2}[/tex]
For triangle ABC, we have:
[tex]AB = \sqrt{(0 -4)^2 + (0 -0)^2} = 4[/tex]
[tex]BC = \sqrt{(4 -0)^2 + (0 -2)^2} = 2\sqrt 5[/tex]
[tex]CA = \sqrt{(0 -0)^2 + (0 -2)^2} = 2[/tex]
For triangle DEF, we have:
[tex]DE = \sqrt{(0 -2)^2 + (0 -0)^2} = 2[/tex]
[tex]EF = \sqrt{(2 -0)^2 + (0 -1)^2} = \sqrt 5[/tex]
[tex]FD = \sqrt{(0 -0)^2 + (1 -0)^2} = 1[/tex]
Divide corresponding sides of the triangles to calculate the scale factor k
[tex]k = \frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}[/tex]
This gives
[tex]k = \frac{4}{2} = \frac{2\sqrt 5}{\sqrt 5} = \frac{2}{1}[/tex]
Evaluate the quotients
[tex]k = 2 = 2 = 2[/tex]
Since the quotients are equal, then the triangles are similar
Hence, triangles ABC and DEF are similar by SSS theorem
Read more about similar triangles at:
https://brainly.com/question/14285697