Respuesta :
[tex]=\int\limit(\frac{1}{t^{2} }-\frac{2}{t^{3} }) dt \\\\=\int\limit\frac{1}{t^{2} }dt-2\int\limit\frac{1}{t^{3} }dt\\\\=-\frac{1}{t}-2 \int\limit\frac{1}{t^{3} }dt\\\\=\frac{1-t}{t^{2} }[/tex]
Step-by-step explanation:
[tex]\\ \tt\hookrightarrow {\displaystyle{\int}}\left(\dfrac{1}{t^2}-\dfrac{2}{t^3}\right)dt[/tex]
[tex]\\ \tt\hookrightarrow {\displaystyle{\int}}(t^{-2}-2t^{-3})dt[/tex]
[tex]\\ \tt\hookrightarrow {\displaystyle{\int}}t^{-2}-2{\displaystyle{\int}}t^{-3}dt[/tex]
[tex]\\ \tt\hookrightarrow \dfrac{t^{-1}}{-1}-2\dfrac{t^{-2}}{-2}[/tex]
[tex]\\ \tt\hookrightarrow \dfrac{-1}{t}+\dfrac{1}{t^2}[/tex]
[tex]\\ \tt\hookrightarrow \dfrac{-2+1}{t^2}[/tex]
[tex]\\ \tt\hookrightarrow \dfrac{-1}{t^2}[/tex]