Respuesta :

You can use the factored form of the quadratic polynomial and then find the simplified sum.

The numerator of the simplified sum of the given expression is [tex]4x + 6[/tex]

How to factorize a quadratic polynomial with single variable?

Quadratic polynomial with single variables are expressible in the form

[tex]ax^2 + bx + c[/tex] where x is the variable and a,b,c are constants.

Its factored form is

[tex]\dfrac{1}{4a^2} \times (2ax +b-\sqrt{b^2 - 4ac})(2ax +b+ \sqrt{b^2 - 4ac})[/tex]

Using the above method and finding the simplified form of the given expression

The given expression is

[tex]\dfrac{x}{x^2 + 3x + 2} + \dfrac{3}{x + 1}[/tex]

Factorizing [tex]x^2 + 3x +2[/tex] using the aforesaid method, as we have got

a = 1, b = 3, c = 2,

thus, we have

[tex]ax^2 + bx + c = \dfrac{1}{4a^2} \times (2ax + b-\sqrt{b^2 - 4ac})(2ax +b + \sqrt{b^2 - 4ac})\\\\\begin{aligned}x^2 + 3x + 2 &= \dfrac{1}{4}(2x + 3 - \sqrt{9-8})(2x + 3 + \sqrt{9-8})\\\\&= \dfrac{1}{2}(2x+2) \times \dfrac{1}{2}(2x+4)\\&= (x+2)(x+1)\end{aligned}[/tex]

Thus, the given sum is

[tex]\begin{aligned}\dfrac{x}{x^2 + 3x + 2} + \dfrac{3}{x + 1} &= \dfrac{x}{(x+2)(x+1)} + \dfrac{3}{x + 1} \times \dfrac{(x+2)}{(x+2)}\\\\&= \dfrac{x + 3(x+2)}{(x+1)(x+2)} \\&= \dfrac{4x + 6}{(x+1)(x+2)}\\\end{aligned}[/tex]

Thus, the numerator of the simplified sum is [tex]4x + 6[/tex]

Learn more about fractions here:

https://brainly.com/question/14261303

Answer:

4x+6

Step-by-step explanation:

C on edge 2022