Answer:
[tex]\approx 116 \: {cm}^{2} [/tex]
Step-by-step explanation:
Radius of the internal circle [tex]r_1=2.3 \: cm[/tex]
Radius of the external circle [tex]r_2=6.5 \: cm[/tex]
Area of the shaded region = Area of external circle - Area of internal circle.
[tex] = \pi r_{2}^{2} - \pi r_{1}^{2} \\ \\ = \pi \{ r_{2}^{2} - r_{1}^{2} \} \\ \\ = \pi \{ (6.5)^{2} - (2.3)^{2} \}\\ \\ = 3.14\{ (6.5 + 2.3) (6.5 - 2.3) \}\\ \\ = 3.14\{8.8 \times 4.2 \}\\ \\ = 116.0544 \\ \\ \approx 116 \: {cm}^{2} [/tex]