contestada

Reflect the triangle across the dashed
line and enter the new coordinates.
CC-2,4)
Enter the
B(1,3) number that
belongs in the
A(1,1)
green box.
A'([?].[ ])
B'[ ] [ ]
C'([],[])
Enter

Respuesta :

When a point is reflected, it must be reflected across a line.

The coordinates of the reflected points are: [tex]A' = (-1,1)[/tex], [tex]B' = (-1,3)[/tex] and [tex]C' = (2,4)[/tex]

The coordinates of the triangle are given as:

[tex]A = (1,1)[/tex]

[tex]B = (1,3)[/tex]

[tex]C=(-2,4)[/tex]

The dashed line is the y-axis;

Reflection rule

The rule of reflection across the y-axis is:

[tex](x,y) \to (-x,y)[/tex]

Applying the reflection rule

So, the coordinates of the reflected points are:

[tex]A' = (-1,1)[/tex]

[tex]B' = (-1,3)[/tex]

[tex]C' = (2,4)[/tex]

Hence, the coordinates of the reflected points are: [tex]A' = (-1,1)[/tex], [tex]B' = (-1,3)[/tex] and [tex]C' = (2,4)[/tex]

Read more about reflection at:

https://brainly.com/question/4289712