Respuesta :

Answer:  [tex]\boldsymbol{2.376 \times 10^4}[/tex]

========================================================

Explanation:

Let's solve for 'a' in the original equation. Each x shown below indicates multiplication.

[tex](a \times 10^4)+(a \times 10^2) = 24240\\\\a(10^4+10^2) = 24240\\\\a(10000+100) = 24240\\\\a(10100) = 24240\\\\a = 24240/10100\\\\a = 2.4[/tex]

I used the distributive property to factor out the 'a' in the second step.

As a check so far,

[tex](a \times 10^4)+(a \times 10^2) = (2.4 \times 10^4)+(2.4 \times 10^2) = (24000)+(240) = 24240 \checkmark[/tex]

which shows we have the correct value for 'a'.

---------------

Once we determine the value of 'a', we can compute the expression your teacher wants.

[tex](a \times 10^4)-(a \times 10^2)\\\\(2.4 \times 10^4)-(2.4 \times 10^2)\\\\(24000)-(240)\\\\23760\\\\\boldsymbol{2.376 \times 10^4}[/tex]

The answer is 2.376 × 10⁴

Given:-

(a × 10⁴) + (a × 10²) = 24240

To Find:-

(a × 10⁴) - (a × 10²) = ?

Now,

a(10⁴ + 10²) = 24240

a(10000 + 100) = 24240

a(10100) = 24240

Divide 10100 from both side we get,

a(10100)/10100 = 24240/10100

a = 2.4

Here, The value of a is 2.4

So, substitute the value of a in equation

(a × 10⁴) - (a × 10²)

(2.4 × 10⁴) - (2.4 × 10²)

24000 - 240 = 23760 = 2.376 × 10

Thus, The answer is 2.376 × 10⁴

 

-TheUnknownScientist 72