Respuesta :
Answer:
[tex] \huge \boxed{ \underline{ f(\sf-6)=\tt 8}}[/tex]
Step-by-step explanation:
Given polynomial:-
[tex] \bf : \sf \longmapsto \: f(x) = - x + 2[/tex]
When,
[tex] :\sf \longmapsto \: f( - 6)[/tex]
We need to find the value of:-
[tex] :\sf \longmapsto \: f( - 6)[/tex]
Solution:-
[tex]\bf : \sf \longmapsto \: f(x) = - x + 2[/tex]
Replace [tex]x[/tex] with[tex]-6[/tex] on the given Expression:
[tex]\bf : \sf \longmapsto \: f( - 6) = - (- 6) + 2[/tex]
Simplify:
Remove parenthesis of RHS of the given expression :
As we know (-) and (-) equals to (+),So,
[tex]\bf : \sf \longmapsto \: f( - 6) = + 6 + 2[/tex]
Simply add 6 and 2 of RHS:
[tex]\bf : \sf \longmapsto \: f( - 6) = 8[/tex]
Hence, the value of [tex]f(-6)[/tex] is [tex]\boxed{\bold{8}}[/tex] .
________________________________
I hope this helps!
Please let me know if you have any questions.I am joyous to help!
Given the function, [tex]f(x)[/tex] = -x + 2, [tex]f(-6)[/tex] = 8.
Value of Functions
To find the value of a function, plug in the value of x given into the equation of the function, and simplify.
Given:
[tex]f(x)[/tex] = -x + 2
To find, [tex]f(-6)[/tex], substitute x = -6 into [tex]f(x)[/tex] = -x + 2.
- Thus:
[tex]f(-6)[/tex] = -(-6) + 2
[tex]f(-6)[/tex] = 6 + 2
[tex]f(-6)[/tex] = 8
Therefore, given the function, [tex]f(x)[/tex] = -x + 2, [tex]f(-6)[/tex] = 8.
Learn more about functions on:
https://brainly.com/question/5404467