Respuesta :

Answer:

[tex]2 {x}^{2} + 12x + 18[/tex]

[tex]➳ \: 2 {x}^{2} + 6x + 6x + 18

[/tex]

[tex]➳2x(x + 3) + 6(x + 3)[/tex]

[tex]➳ \: (2x + 6)(x + 3)[/tex]

hence in there equation solution

we can solve the value of x

[tex] \leadsto \: (2x + 6)[/tex]

[tex] \longrightarrow \: 2x = - 6[/tex]

[tex]➳x = \frac{ - 6}{2} [/tex]

[tex]➳ \: x \longrightarrow \: - 3[/tex]

hence , x ➳-3

The values of x are -3

The equation is given as:

[tex]2x^2 + 12x + 18 = 0[/tex]

Expand the equation

[tex]2x^2 + 6x + 6x + 18 = 0[/tex]

Factorize the equations

[tex]2x(x + 3) + 6(x + 3) = 0[/tex]

Factor out x + 3

[tex](2x + 6) (x + 3) = 0[/tex]

Split the equation

[tex](2x + 6) = 0\ or\ (x + 3) = 0[/tex]

Remove the brackets

[tex]2x + 6 = 0\ or\ x + 3 = 0[/tex]

Solve for x

[tex]x = -3\ or\ x =-3[/tex]

Hence, the values of x are -3

Read more about quadratic equation at:

https://brainly.com/question/1214333