Respuesta :
Answer:
[tex]2 {x}^{2} + 12x + 18[/tex]
[tex]➳ \: 2 {x}^{2} + 6x + 6x + 18
[/tex]
[tex]➳2x(x + 3) + 6(x + 3)[/tex]
[tex]➳ \: (2x + 6)(x + 3)[/tex]
hence in there equation solution
we can solve the value of x
[tex] \leadsto \: (2x + 6)[/tex]
[tex] \longrightarrow \: 2x = - 6[/tex]
[tex]➳x = \frac{ - 6}{2} [/tex]
[tex]➳ \: x \longrightarrow \: - 3[/tex]
hence , x ➳-3
The values of x are -3
The equation is given as:
[tex]2x^2 + 12x + 18 = 0[/tex]
Expand the equation
[tex]2x^2 + 6x + 6x + 18 = 0[/tex]
Factorize the equations
[tex]2x(x + 3) + 6(x + 3) = 0[/tex]
Factor out x + 3
[tex](2x + 6) (x + 3) = 0[/tex]
Split the equation
[tex](2x + 6) = 0\ or\ (x + 3) = 0[/tex]
Remove the brackets
[tex]2x + 6 = 0\ or\ x + 3 = 0[/tex]
Solve for x
[tex]x = -3\ or\ x =-3[/tex]
Hence, the values of x are -3
Read more about quadratic equation at:
https://brainly.com/question/1214333