Answer:
30°
Step-by-step explanation:
[tex]height \: of \: the \: tower \: (h)\: = 80 \sqrt{3} \: m \\ distance \: of \: the \: observer \: (d) = 240 \: m \\ \\ let \: \theta \: be \: the \: angle \: of \: elevation \\ \\ \therefore \: tan \theta = \frac{h}{d} \\ \\ = \frac{80 \sqrt{3} }{240} \\ \\ = \frac{ \sqrt{3} }{3} \\ \\ \therefore \: tan \theta = \frac{1}{ \sqrt{3} } \\ \\ \implies \: tan \theta = \tan \: 30 \degree \\ \\ \huge{ \red {\therefore \: \theta \: = 30 \degree}}[/tex]